Homogeneous affine surfaces: Moduli spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Embeddings of Homogeneous Spaces

Let G be a reductive algebraic group and H a closed subgroup of G. An affine embedding of the homogeneous space G/H is an affine G-variety with an open G-orbit isomorphic to G/H . The homogeneous space G/H admits an affine embedding if and only if G/H is a quasi-affine algebraic variety. We start with some basic properties of affine embeddings and consider the cases, where the theory is well-de...

متن کامل

Computation of the Cartan Spaces of Affine Homogeneous Spaces

Let G be a reductive algebraic group and H its reductive subgroup. Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. The Cartan space aG,G/H is, by definition, the subspace of Lie(T )∗ generated by the weights of B-semiinvariant rational functions on G/H . We compute the spaces aG,G/H.

متن کامل

K3 surfaces: moduli spaces and Hilbert schemes

LetX be an algebraicK3 surface. Fix an ample divisorH onX ,L ∈ Pic(X) and c2 ∈ Z. Let MH(r;L, c2) be the moduli space of rank r, H-stable vector bundles E over X with det(E) = L and c2(E) = c2. The goal of this paper is to determine invariants (r; c1, c2) for which MH(r;L, c2) is birational to some Hilbert scheme Hilb(X).

متن کامل

Beauville Surfaces, Moduli Spaces and Finite Groups

In this paper we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.07.005